Domination in transitive colorings of tournaments
نویسندگان
چکیده
An edge coloring of a tournament T with colors 1, 2, . . . , k is called ktransitive if the digraph T (i) defined by the edges of color i is transitively oriented for each 1 ≤ i ≤ k. We explore a conjecture of the first author: For each positive integer k there exists a (least) p(k) such that every k-transitive tournament has a dominating set of at most p(k) vertices. We show how this conjecture relates to other conjectures and results. For example, it is a special case of a well-known conjecture of Erdős, Sands, Sauer and Woodrow [15] (so the conjecture is interesting even if false). We show that the conjecture implies a stronger conjecture, a possible extension of a result of Bárány and Lehel on covering point sets by boxes. The principle used leads also to an upper bound O(22 d−1 d log d) on the d-dimensional boxcover number that is better than all previous bounds, in a sense close to best possible. We also improve the best bound known in 3-dimensions from 314 to 64 and propose possible further improvements through finding the maximum domination number over parity tournaments.
منابع مشابه
Domination in tournaments
We investigate the following conjecture of Hehui Wu: for every tournament S, the class of S-free tournaments has bounded domination number. We show that the conjecture is false in general, but true when S is 2-colourable (that is, its vertex set can be partitioned into two transitive sets); the latter follows by a direct application of VC-dimension. Our goal is to go beyond this; we give a non-...
متن کاملKernels by Monochromatic Directed Paths In m-Colored Digraphs With Quasi-Transitive Chromatic Classes
In this paper, we give sufficient conditions for the existence of kernels by monochromatic directed paths (m.d.p.) in digraphs with quasi-transitive colorings. Let D be an m-colored digraph. We prove that if every chromatic class of D is quasi-transitive, every cycle is quasitransitive in the rim and D does not contain polychromatic triangles, then D has a kernel by m.d.p. The same result is va...
متن کاملPACKING AND DECOMPOSITIONS IN TRANSITIVE TOURNAMENTS – PhD THESIS
In this thesis we shall deal with oriented graphs. The motivation for us is a result by Sali and Simonyi (see also a short proof by Gyárfás) where the existence of the decomposition of transitive tournaments on two isomorphic graphs is shown. In this thesis we start to study a problem of packing in transitive tournaments and we consider decompositions and partitions of transitive tournaments. T...
متن کاملDomination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کاملUnavoidable tournaments
A basic result in Ramsey theory states that any tournament contains a “large” transitive subgraph. Since transitive tournaments contain only transitive subgraphs, it is natural to ask which subgraphs must appear in any large tournament that is “far” from being transitive. One result of this type was obtained by Fox and Sudakov who characterized the tournaments that appear in any tournament that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 107 شماره
صفحات -
تاریخ انتشار 2014